## ANSWERS & MARK SCHEMES

# **QUESTIONSHEET 1**

| (a) (i) increased solute pressure; lowers their water potential; thus water enters by osmosis;                                                                                                                                                                   | max 2            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| <ul><li>(ii) inner wall has extra thickening/uneven wall thickening;<br/>causes differential expansion when cytoplasm presses on it (opening stoma);</li></ul>                                                                                                   | 2                |
| (b) process which returns system to the norm/equilibrium; drying of cells leads to stomatal closure/converse; fall in CO <sub>2</sub> concentration leads to stomatal opening/converse;                                                                          | max 3            |
| (c) loss of water kills plants/reduces leaf surface area/reduces light absorption; but stomata must be open for entry/exit of CO <sub>2</sub> /O <sub>2</sub> ; also transpiration stream enables transport of salts /transpiration has a cooling function;      | max 2<br>TOTAL 9 |
| QUESTIONSHEET 2                                                                                                                                                                                                                                                  |                  |
| <ul> <li>(a) obtain epidermal strip/impression using nail varnish or similar;</li> <li>observe under low power light microscope with eyepiece/slide grid/micrometer;</li> <li>count number of stomata in stated area;</li> <li>repeat to obtain mean;</li> </ul> | 4                |
| (b) (i) B; similar stomatal density on both surfaces in B;                                                                                                                                                                                                       | 2                |
| <ul><li>(ii) A;</li><li>has lowest stomata density/least stomata;</li><li>thus less chance of water loss occurring too quickly/less chance of wilting;</li></ul>                                                                                                 | 2                |
|                                                                                                                                                                                                                                                                  | TOTAL 8          |
| QUESTIONSHEET 3                                                                                                                                                                                                                                                  |                  |
| (a) X = tracheid;<br>Y = vessel;                                                                                                                                                                                                                                 | 2                |
| (b) large leaf surface area and many stomata; result in much water loss by transpiration; this must be replaced from transpiration stream; vessels can transport greater volumes/faster than tracheids;                                                          | 4                |
| (c) (i) phloem; sieve tube; companion cell;                                                                                                                                                                                                                      | 3                |
| (ii) the bulk transport of materials from one point to another; as a result of pressure difference between the two points;                                                                                                                                       | 2                |
|                                                                                                                                                                                                                                                                  | mom. v. 44       |

## ANSWERS & MARK SCHEMES

# QUESTIONSHEET 4

| (a) (i)<br>(ii)<br>(iii) | potometer;<br>the rate of water uptake by the shoot;<br>movement of bubble indicates volume of water taken up by the shoot;                                                                                                           | 1<br>1<br>1 |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| (b) (i)                  | cut shoot underwater;<br>keeping leaves dry;<br>set up complete apparatus underwater;<br>keep all joints air tight/prevent unwanted bubbles entering;                                                                                 | max 3       |
| (ii)                     | use a fan at different speeds for air currents;<br>allow at least 15 minutes to acclimatise;<br>set air bubble to start of scale using water in reservoir (and tap);<br>measure distance air bubble moves in a specific time;         |             |
|                          | repeat 3 times at each air speed and calculate means;                                                                                                                                                                                 | max 4       |
|                          |                                                                                                                                                                                                                                       | TOTAL 10    |
| QUES                     | TIONSHEET 5                                                                                                                                                                                                                           |             |
| (a) (i)                  | A = vessel/vessel unit;<br>B = tracheid;                                                                                                                                                                                              | 2           |
| (ii)                     | xylem;                                                                                                                                                                                                                                | 1           |
| (iii)                    | parenchyma;<br>fibre/sclerenchymatous fibre;                                                                                                                                                                                          | 2           |
| (iv)                     | lignin; to allow elongation during stem growth/if it was solid it would not stretch;                                                                                                                                                  | 2           |
| (b) (i)                  | conduction of water <u>and</u> salts;<br>mechanical support;                                                                                                                                                                          |             |
| (ii)                     | cell contents have died so it is hollow allowing water flow;<br>end cell walls have broken down forming a continuous tube giving unimpeded water passage;<br>lignin gives rigidity giving some mechanical strength/keeping tube open; | 3           |
|                          | ngmin gives rigidity giving some mechanical strength/keeping tube open,                                                                                                                                                               | TOTAL 12    |
| OUES                     | TIONSHEET 6                                                                                                                                                                                                                           |             |
| (a) (i)                  | A = guard cells;                                                                                                                                                                                                                      |             |
|                          | B = accessory cells of stoma;<br>C = epidermal cells;                                                                                                                                                                                 | 3           |
| (ii)                     | to allow stomata to close to reduce water/transpiration loss/preventing wilting; to allow stomata to open to enable transpiration for cooling;                                                                                        | n = 1)      |
|                          | to enable oxygen entry through stomata for respiration; to enable carbon dioxide entry through stomata for photosynthesis; \rightarrow (to allow gas exchange = 1)                                                                    | 4           |
| (iii)                    | cells A can photosynthesise and thus accumulate sugars/use up ${\rm CO_2}$ ; which initiates the mechanism for stomatal opening;                                                                                                      | 2           |
| (b) (i)                  | $\frac{4 \times 1.000}{0.0105}$ ; = 381 (stomata mm <sup>2</sup> ); (units in the question so not essential in the answer)                                                                                                            | 2           |
| (ii)                     | assumption that the stomata are randomly distributed (and they may not be);                                                                                                                                                           | 1           |
| (11)                     | assumption that the storiate the randomly distributed (that they may not be),                                                                                                                                                         | TOTAL 12    |
|                          |                                                                                                                                                                                                                                       | 101/11/12   |

#### **ANSWERS & MARK SCHEMES**

#### **QUESTIONSHEET 7**

(a) (i) in angiosperms main xylem conducting tissue is vessels; where as in gymnosperms it is tracheids;

angiosperms have broader leaves/more stomata than gymnosperms;

max 2

(ii) removal of bark removes phloem;

responsible for transport of sugars to fruit;

to enable fuit development/formation of food store in fruit;

max 2

(iii) movement/uptake/loading of sucrose from mesophyll cells to phloem is active/requires ATP; metabolic inhibitors stop respiration/prevent ATP manufacture;

2

TOTAL 6

#### **QUESTIONSHEET 8**

(a) for storage;

to provide energy for fruit/tomato development;

to make fruits/tomatoes attractive to animals;

for animal dispersal;

max 3

(b) end walls of sieve tube elements are perforated/ref to sieve plates;

cytoplasm of sieve tube element is thin/peripheral/contains few organelles/has no nucleus;

cellulose cell walls allow exchange of substances across them;

ref to elongated sieve tubes;

max 3

TOTAL 6

#### **QUESTIONSHEET 9**

(a) A: piliferous layer; (reject 'epidermis')

B: endodermis;

C: xylem;

D: phloem;

E: root hair;

5

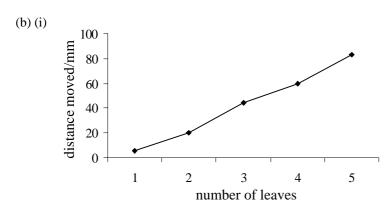
(b) (i) B Function: control entry of water/salts into xylem;

Adaptation: Casparian strip/ligin deposit in walls/on radial walls (blocks apoplastic path);

2

2

(ii) E Function: absorb water/salts;


Adaptation: large surface area/single cells/extensions of piliferous layer;

#### **ANSWERS & MARK SCHEMES**

#### **QUESTIONSHEET 10**

(a) ensure all apparatus is full of water/contains no air; cut shoot under water; use grease/vaseline in all joints to prevent leakage; keep leaves dry;

max 2



one for correct scale;

one for correct labelled axes; (no. of leaves on X-axis)

one for correct plot;

one for joining points with a ruled straight line; (IOB recommendations)

distance moved by bubble decreases as number of leaves decreases;
 as less water is lost from leaves by transpiration;
 less water is drawn up the stem/xylem;
 less water absorbed by shoot;

max 3

1

4

(iii) that water uptake equals water lost from leaves;

TOTAL 10

#### **QUESTIONSHEET 11**

(a) thick epidermis on lower/abaxial/outer surface; prevents diffusion of water;

no stomata on abaxial/lower/outer surface;

reduces evaporation/transpiration/diffusion loss of water;

leaf is rolled; confines/protects inner tissues/reduces/reduces diffusion gradient;

hairs; reduce air movement;

large epidermal/hinge cells; shrink to roll leaf when transpiration high;

sunken stomata; reduces transpiration; (any two pairs of mark points)

max 4

(b) water evaporates from mesophyll cells into air spaces;

diffuses out of stoma;

loss of water from cells reduces their water potential relative to adjacent cell;

water moves from cell with higher water potential to cell with lower water potential (etc);

water drawn into mesophyll cells from xylem;

water drawn up xylem;

cohesive force between water molecules;

adhesion force between water molecules and xylem cells;

ref to water drawn across root cortex from root hairs to xylem;

ref apoplast/symplast/vacuolar pathways;

max 6

#### **AS 5**

#### TRANSPORT IN PLANTS

#### ANSWERS & MARK SCHEMES

## **QUESTIONSHEET 12**

(a) defoliation causes sugar concentration to fall; suggests the source is the leaves;

2

(b) sugars move from sources/leaves to sinks/storage areas/main stems; sugars actively taken up by phloem companion cells; and passed to sieve tubes; water follows osmotically/along water potential gradient; creates hydrostatic pressure; sugars removed from phloem at sink and water follows; hydrostatic pressure difference between source and sink creates mass flow;

max 4